Functional a posteriori error estimates for incremental models in elasto-plasticity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional a Posteriori Error Estimates for Incremental Models in Elasto-plasticity

We consider a convex variational problem related to a time-step problem in elasto-plastic models with isotropic hardening. Our goal it to derive a posteriori error estimate of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. The estimates are obtained by a advanced version of the variational approach earlier used for linear b...

متن کامل

A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity

A new approach to a posteriori error estimation and adaptive mesh design based on techniques from optimal control is presented for primal-mixed finite element models in elasto-plasticity. This method uses global duality arguments for deriving weighted a posteriori error bounds for arbitrary functionals of the error representing physical quantities of interest. In these estimates local residuals...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Error estimates for elasto-plastic problems

— Under some reasonable smoothness assumpfions on the displacements, we are able to dérive an error estimate of the form ||a — <7h||L2{fl)^ Ch, for the approximation of the stress field a in some problems in elasto-plasticity. Using the same ideas, we als o find a piecewise line ar approximation of Mosolov's problem, for which we still get an 0 (h) error estimate.

متن کامل

On A Posteriori Error Estimates

Consider a sequence {xn}n—Q in a normed space X converging to some x* £ X. It is shown that the sequence satisfies a condition of the type ||x* -x„|| < oi||xn xn_¡\\ for some constant a and every n > 1, if the associated null sequence {e„}„=q, en = x* — xn, is uniformly decreasing in norm or if it is alternating with respect to any ordering whose cone of positive elements is acute.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Central European Journal of Mathematics

سال: 2009

ISSN: 1895-1074,1644-3616

DOI: 10.2478/s11533-009-0035-2